Home
Class 14
MATHS
Value of (tan 1^@ tan2^@ tan3^@...tan8...

Value of `(tan 1^@ tan2^@ tan3^@...tan89^@)` is :

A

1

B

89

C

undefined

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \), we can use the properties of the tangent function and its relationship with cotangent. ### Step-by-step Solution: 1. **Understanding the Symmetry**: The tangent function has a property where \( \tan(90^\circ - x) = \cot x \). This means that for every angle \( x \) in the range from \( 1^\circ \) to \( 89^\circ \), there is a corresponding angle \( 90^\circ - x \) such that: \[ \tan(90^\circ - x) = \cot x \] 2. **Pairing the Angles**: We can pair the terms in the product: \[ \tan 1^\circ \tan 89^\circ, \tan 2^\circ \tan 88^\circ, \tan 3^\circ \tan 87^\circ, \ldots, \tan 44^\circ \tan 46^\circ \] The middle term \( \tan 45^\circ \) stands alone since \( \tan 45^\circ = 1 \). 3. **Using the Cotangent Identity**: Each pair can be expressed using the cotangent identity: \[ \tan k^\circ \tan(90^\circ - k^\circ) = \tan k^\circ \cot k^\circ = 1 \] Therefore: \[ \tan 1^\circ \tan 89^\circ = 1, \quad \tan 2^\circ \tan 88^\circ = 1, \quad \tan 3^\circ \tan 87^\circ = 1, \ldots, \tan 44^\circ \tan 46^\circ = 1 \] 4. **Counting the Pairs**: There are \( 44 \) pairs (from \( 1^\circ \) to \( 44^\circ \)) and one \( \tan 45^\circ \): \[ \text{Total product} = (\tan 1^\circ \tan 89^\circ) \times (\tan 2^\circ \tan 88^\circ) \times \ldots \times (\tan 44^\circ \tan 46^\circ) \times \tan 45^\circ \] Since each pair equals \( 1 \) and \( \tan 45^\circ = 1 \), the total product is: \[ 1 \times 1 \times \ldots \times 1 \times 1 = 1 \] 5. **Conclusion**: Therefore, the value of \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \) is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

tan 1^@ tan2^@...tan 89^@=

The value of tan1^(@)tan2^(@)tan3^(@)...tan89^(@) is

The value of tan1^(@)tan2^(@)tan3^(@)...tan89^(@) is

The value of (tan 1^(@) tan 2^(@) tan 3^(@) … tan 89^(@) ) is

The value of tan1^(0)tan2^(0)tan3^(@)tan89^(@) is 0b.1 c.1/2d .not defined

Find the value of tan 1^@ tan 2^@ tan 3^@ ….tan 45^@ …..tan 88^@ tan 89^@