Home
Class 14
MATHS
If a + b + c = 2s, then ((s-a)^2 + (s-b)...

If `a + b + c = 2s`, then `((s-a)^2 + (s-b)^2 + (s-c)^2 + s^2)/(a^2 + b^2 + c^2)` is equal to

A

`a^2 + b^2 + c^2`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given the condition \( a + b + c = 2s \). We will follow these steps: ### Step 1: Understand the given condition We have the equation: \[ a + b + c = 2s \] This means that the sum of \( a \), \( b \), and \( c \) is twice the value of \( s \). ### Step 2: Assume values for \( a \), \( b \), and \( c \) Since we have one equation with three variables, we can assume values for \( a \), \( b \), and \( c \) to simplify our calculations. Let's assume: - \( a = 0 \) - \( b = 1 \) - \( c = 1 \) Now we can check if these values satisfy the equation: \[ 0 + 1 + 1 = 2 \quad \text{which implies} \quad 2s = 2 \quad \Rightarrow \quad s = 1 \] ### Step 3: Substitute the values into the expression We need to evaluate the expression: \[ \frac{(s-a)^2 + (s-b)^2 + (s-c)^2 + s^2}{a^2 + b^2 + c^2} \] Substituting \( s = 1 \), \( a = 0 \), \( b = 1 \), and \( c = 1 \): - \( s - a = 1 - 0 = 1 \) - \( s - b = 1 - 1 = 0 \) - \( s - c = 1 - 1 = 0 \) Now we can calculate: \[ (s-a)^2 = 1^2 = 1 \] \[ (s-b)^2 = 0^2 = 0 \] \[ (s-c)^2 = 0^2 = 0 \] \[ s^2 = 1^2 = 1 \] Now, substituting these values into the expression: \[ \frac{1 + 0 + 0 + 1}{a^2 + b^2 + c^2} \] ### Step 4: Calculate the denominator Now we calculate \( a^2 + b^2 + c^2 \): \[ a^2 = 0^2 = 0 \] \[ b^2 = 1^2 = 1 \] \[ c^2 = 1^2 = 1 \] Thus, \[ a^2 + b^2 + c^2 = 0 + 1 + 1 = 2 \] ### Step 5: Final calculation Now we can substitute back into the expression: \[ \frac{1 + 0 + 0 + 1}{0 + 1 + 1} = \frac{2}{2} = 1 \] ### Conclusion The value of the expression is: \[ \boxed{1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2s = a + b + c , then the value of (s - a)^2 + (s - b)^2 + (s - c)^2 + s^2 - a^2 - b^2 - c^2 will be :

If a + b+ c =2s , thent the value of (s-a)^(2) + (s-b)^(2) +( s-c)^2 will be

If (s-a) +(s-b) +(s-c) =s , then the vlaue of ((s-a)^(2) +(s-b)^(2) +(s-c)^(2) +s^(2))/(a^(2) +b^(2)+c^(2)) will be

If 2x=a+b+c , then prove that, (s-a)^(2)+(s-b)^(2) +(s-c)^(2) +s^(2)=a^(2)+b^(2)+c^(2) .

If c^(2)=a^(2)+b^(2),2s=a+b+c, then 4s(s-a)(s-b)(s-c)

If c^(2)=a^(2) +b^(2), then 4s(s-a)(s-b)(s-c) is equal to