Home
Class 14
MATHS
If xy(x + y) = 1 then,the value of 1/(x^...

If `xy(x + y) = 1` then,the value of `1/(x^3 y^3) -x^3 - y^3` is

A

3

B

`-3`

C

1

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: **Step 1: Start with the equation** Given: \[ xy(x + y) = 1 \] **Step 2: Express \( x + y \) in terms of \( xy \)** From the equation, we can express \( x + y \): \[ x + y = \frac{1}{xy} \] **Hint for Step 2:** Remember that if you have a product equal to a constant, you can isolate one of the terms. **Step 3: Cube both sides** Now, we will cube both sides: \[ (x + y)^3 = \left(\frac{1}{xy}\right)^3 \] **Step 4: Expand the left-hand side using the binomial theorem** Using the binomial expansion: \[ (x + y)^3 = x^3 + y^3 + 3xy(x + y) \] Substituting \( x + y \): \[ (x + y)^3 = x^3 + y^3 + 3xy\left(\frac{1}{xy}\right) \] This simplifies to: \[ (x + y)^3 = x^3 + y^3 + 3 \] **Hint for Step 4:** When expanding cubes, remember to include all terms from the binomial expansion. **Step 5: Substitute the right-hand side** Now substituting the right-hand side: \[ \left(\frac{1}{xy}\right)^3 = \frac{1}{x^3y^3} \] So we have: \[ x^3 + y^3 + 3 = \frac{1}{x^3y^3} \] **Hint for Step 5:** Be careful with fractions; ensure you maintain the correct operations when substituting. **Step 6: Rearranging the equation** Rearranging gives us: \[ x^3 + y^3 = \frac{1}{x^3y^3} - 3 \] **Step 7: Finding the required expression** Now, we need to find: \[ \frac{1}{x^3y^3} - x^3 - y^3 \] Substituting from the previous result: \[ \frac{1}{x^3y^3} - (x^3 + y^3) = \frac{1}{x^3y^3} - \left(\frac{1}{x^3y^3} - 3\right) \] **Step 8: Simplifying the expression** This simplifies to: \[ \frac{1}{x^3y^3} - \frac{1}{x^3y^3} + 3 = 3 \] **Final Answer:** Thus, the value of \( \frac{1}{x^3y^3} - x^3 - y^3 \) is: \[ \boxed{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x - y = 1 , then the value of x^3 - y^3 - 3xy will be :

If x+y= a and xy=b, then the value of 1/x^3+1/y^3 is

If x-y =4 and xy=45 , then the value of (x^3 - y^3) is :

If (x+y)=8 and xy=15 then the value of (x^3-y^3) is :

If x+y=5 and xy=6 , then the value of x^(3)+y^(3) is

If x+y=1 then the value of (x^(3)+y^(3)+3xy) is

If x-y= -1 , then find the value of x^3 - y^3 +3xy