Home
Class 14
MATHS
If x + y + z = 6 and x^2 + y^2 + z^2= 2...

If `x + y + z = 6 and x^2 + y^2 + z^2= 20` then the value of `x^3 + y^3 + z^3 - 3xyz` is

A

64

B

70

C

72

D

76

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + y^3 + z^3 - 3xyz \) given the equations \( x + y + z = 6 \) and \( x^2 + y^2 + z^2 = 20 \). ### Step-by-step Solution: 1. **Use the identity for the sum of cubes**: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] 2. **Substitute the known values**: We know that \( x + y + z = 6 \) and \( x^2 + y^2 + z^2 = 20 \). We need to find \( xy + yz + zx \). 3. **Use the identity relating sums and squares**: The identity states: \[ x^2 + y^2 + z^2 = (x + y + z)^2 - 2(xy + yz + zx) \] Substituting the known values: \[ 20 = 6^2 - 2(xy + yz + zx) \] This simplifies to: \[ 20 = 36 - 2(xy + yz + zx) \] 4. **Rearranging the equation**: \[ 2(xy + yz + zx) = 36 - 20 \] \[ 2(xy + yz + zx) = 16 \] \[ xy + yz + zx = \frac{16}{2} = 8 \] 5. **Substituting back into the identity**: Now we can substitute \( xy + yz + zx \) back into the identity: \[ x^2 + y^2 + z^2 - xy - yz - zx = 20 - 8 = 12 \] 6. **Final calculation**: Now substituting everything back into the sum of cubes identity: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) \] \[ = 6 \times 12 = 72 \] Thus, the value of \( x^3 + y^3 + z^3 - 3xyz \) is **72**.
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z = 19, x^2 + y^2 + z^2 =133 , then the value of x^3 + y^3 + z^3 - 3xyz is: यदि x+y+z = 19, x^2 + y^2 + z^2 =133 है, तो x^3 + y^3 + z^3 - 3xyz का मान हैः

if x = 332 , y= 333 , z, =335 then the value of x^3 + y^3 +z^3- 3 xyz is

lf x+y+ z= 6, xyz=-10 and x^2 + y^2 +z^2 = 30 , then what is the value of (x^3 + y^3 + z^3) ?