Home
Class 14
MATHS
The value of 152 ( sin 30^@ + 2cos^2 ...

The value of
`152 ( sin 30^@ + 2cos^2 45^@ + 3 sin 30^@ + 4 cos^2 45^@ + …+ 17 sin30^@ + 18 cos^2 45^@)` is

A

an integer but not a perfect square

B

a rational number but not an Integer

C

a perfect square of an integer

D

irrational

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \( 152 \left( \sin 30^\circ + 2 \cos^2 45^\circ + 3 \sin 30^\circ + 4 \cos^2 45^\circ + \ldots + 17 \sin 30^\circ + 18 \cos^2 45^\circ \right) \), we will break it down step by step. ### Step 1: Identify the values of trigonometric functions We know: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 45^\circ = \frac{1}{\sqrt{2}} \) so \( \cos^2 45^\circ = \left(\frac{1}{\sqrt{2}}\right)^2 = \frac{1}{2} \) ### Step 2: Rewrite the expression Now substituting these values into the expression: \[ = 152 \left( \frac{1}{2} + 2 \cdot \frac{1}{2} + 3 \cdot \frac{1}{2} + 4 \cdot \frac{1}{2} + \ldots + 17 \cdot \frac{1}{2} + 18 \cdot \frac{1}{2} \right) \] ### Step 3: Factor out common terms Factoring out \( \frac{1}{2} \): \[ = 152 \left( \frac{1}{2} \left( 1 + 2 + 3 + 4 + \ldots + 17 + 18 \right) \right) \] ### Step 4: Calculate the sum of the series The sum of the first \( n \) natural numbers is given by the formula: \[ S_n = \frac{n(n + 1)}{2} \] For \( n = 18 \): \[ S_{18} = \frac{18 \times 19}{2} = 171 \] ### Step 5: Substitute back into the expression Now substituting \( S_{18} \) back into the expression: \[ = 152 \left( \frac{1}{2} \times 171 \right) \] \[ = 152 \times \frac{171}{2} \] \[ = 76 \times 171 \] ### Step 6: Calculate \( 76 \times 171 \) Calculating \( 76 \times 171 \): \[ 76 \times 171 = 12996 \] ### Final Result Thus, the value of the expression is: \[ \boxed{12996} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^2 30^@ cos^2 45^@ + 5 tan^2 30 + 3/2 sin^2 90^@ - 3 cos^2 90^@ is

Find the value of sin ^2 30^@ +cos^@ 45^@ .

The value of sin^(2)30^(@)cos^(2)45^(@)

The value of cos^2 30^@ + sin^2 60^@ + tan^2 45^@ + sec^2 60^@ + cos 0^@ is

What is the value of (sin 60^(@))/( cos^(2) 45^(@) ) - 3 tan 30^(@) + 5 cos 90^(@)

The numerical value of ( cos^2 45^@ ) /( sin ^2 60 ^@) +( cos ^2 60^@ )/( sin ^2 45 ^@ ) -(tan ^2 30 ^@ )/( cot^2 45^@ ) -( sin^2 30 ^@ )/( cot^2 30^@) is

What is the value of 4(sin^4 30^@ + cos^4 60^@) -3(cos^2 45^@ - sin^2 90^@) ?

The value of (cos 0^(@) + sin 45^(@) + sin 30^(@)) (sin 90^(@) - cos 45^(@) + cos 60^(@)) is