Home
Class 14
MATHS
If (1 + sin alpha) (1 + sin beta) (1 + ...

If `(1 + sin alpha) (1 + sin beta) (1 + sin gamma) = (1 - sinalpha) ( 1 - sin beta) ( 1- sin gamma)` = `k`. find the value of k?

A

`pm cos alpha cos beta cos gamma`

B

`pm sin alphasin beta sin gamma`

C

`pm sin alpha cos beta cos gamma`

D

'+ sin alpha sin beta cos gamma`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((1 + \sin \alpha)(1 + \sin \beta)(1 + \sin \gamma) = (1 - \sin \alpha)(1 - \sin \beta)(1 - \sin \gamma) = k\), we will follow these steps: ### Step 1: Set Up the Equations We have two products that are equal to \(k\): \[ (1 + \sin \alpha)(1 + \sin \beta)(1 + \sin \gamma) = k \] \[ (1 - \sin \alpha)(1 - \sin \beta)(1 - \sin \gamma) = k \] ### Step 2: Multiply Both Sides We can multiply both sides of the first equation by the second equation: \[ (1 + \sin \alpha)(1 - \sin \alpha)(1 + \sin \beta)(1 - \sin \beta)(1 + \sin \gamma)(1 - \sin \gamma) = k^2 \] ### Step 3: Apply the Difference of Squares Using the identity \( (a + b)(a - b) = a^2 - b^2 \), we can simplify each pair: \[ (1 - \sin^2 \alpha)(1 - \sin^2 \beta)(1 - \sin^2 \gamma) = k^2 \] Since \(1 - \sin^2 x = \cos^2 x\), we can rewrite this as: \[ \cos^2 \alpha \cos^2 \beta \cos^2 \gamma = k^2 \] ### Step 4: Take the Square Root Taking the square root of both sides gives us: \[ k = \pm \cos \alpha \cos \beta \cos \gamma \] ### Step 5: Conclusion Thus, the value of \(k\) can be expressed as: \[ k = \pm \cos \alpha \cos \beta \cos \gamma \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If : (1-sin alpha)(1-sin beta)(1-singamma)=(1+sinalpha)(1+sin beta)(1+sin gamma), then one value of each side is

If cos alpha + cos beta + cos gamma = 3 then sin alpha + sin beta + sin gamma =

If sin alpha + sin beta + sin gamma=3, " then " sin^(3) alpha+ sin^(3)beta+ sin^(3) gamma= _________

Given that: (1+cos alpha)(1+cos beta)(1+cos gamma)=(1-cos alpha)(1-cos beta)(1-cos gamma) Show that one of the values of each member of this equality is sin alpha sin beta sin gamma

Given that: (1+cos alpha)(1+cos beta)(1+cos gamma)=(1-cos alpha)(1-cos beta)(1-cos gamma) Show that one of the values of each member of this equality is sin alpha sin beta sin gamma

If alpha + beta+gamma=pi , prove that sin^2 alpha + sin^ beta - sin^2 gamma = 2sinalpha sinbeta cosgamma

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta) =

If cos alpha + cos beta + cos gamma = 0 = sin alpha + sin beta + sin gamma then (a) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / ( 2) (b) sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma = (3) / (4) (c) cos ^ (alpha) + cos ^ (2) beta + cos ^ (2) gamma = (3) / (2) (d) cos ^ (2) alpha + cos2 beta + cos2 gamma = -1

cos (alpha + beta) cos gamma-cos (beta + gamma) cos alpha = sin beta sin (gamma-alpha)