Home
Class 14
MATHS
The value of (1-sqrt2) + (sqrt2-sqrt3)+(...

The value of `(1-sqrt2) + (sqrt2-sqrt3)+(sqrt3-sqrt4)+ ............ + (sqrt15-sqrt16)` is

A

0

B

1

C

`-3`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( (1 - \sqrt{2}) + (\sqrt{2} - \sqrt{3}) + (\sqrt{3} - \sqrt{4}) + \ldots + (\sqrt{15} - \sqrt{16}) \), we can follow these steps: ### Step 1: Write the expression clearly The expression can be rewritten as: \[ 1 - \sqrt{2} + \sqrt{2} - \sqrt{3} + \sqrt{3} - \sqrt{4} + \ldots + \sqrt{15} - \sqrt{16} \] ### Step 2: Group the terms Notice that the terms can be grouped in a way that many terms will cancel out: \[ (1 - \sqrt{2}) + (\sqrt{2} - \sqrt{3}) + (\sqrt{3} - \sqrt{4}) + \ldots + (\sqrt{15} - \sqrt{16}) \] ### Step 3: Cancel out terms When we group and rearrange the terms, we see that: - The \( -\sqrt{2} \) from the first term cancels with the \( +\sqrt{2} \) from the second term. - The \( -\sqrt{3} \) from the second term cancels with the \( +\sqrt{3} \) from the third term. - This pattern continues until the last term. Thus, we are left with: \[ 1 - \sqrt{16} \] ### Step 4: Calculate \(\sqrt{16}\) Now, we calculate \(\sqrt{16}\): \[ \sqrt{16} = 4 \] ### Step 5: Substitute back into the expression Substituting back, we get: \[ 1 - 4 = -3 \] ### Conclusion Thus, the value of the entire expression is: \[ \boxed{-3} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (sqrt3 + sqrt2)^3 + (sqrt3 -sqrt2)^3 is ………..

1/(1-sqrt(2))+ 1/(sqrt(2)-sqrt(3))+1/(sqrt(3)-sqrt(4))+..........+1/(sqrt(8)-sqrt(9))

The value of [sqrt2]+[sqrt3]+[sqrt5]

The value of (1)/(1+sqrt(2))+(1)/(sqrt(2)+sqrt(3))+1/(sqrt(3)+sqrt(4))+........+(1)/(sqrt(8) + sqrt(9)) is

The value of { 1/(sqrt6 - sqrt5) - 1/(sqrt5 - sqrt4) + 1/(sqrt4 - sqrt3) - 1/(sqrt3 - sqrt2) + 1/(sqrt2 - 1)} is :

(1)/(sqrt(2)+sqrt(3))+(1)/(sqrt(3)+sqrt(4))

Value of 1/(sqrt2+1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+....+1/(sqrt100+sqrt99) is