Home
Class 14
MATHS
The value of (sec^(2)45^@-cot^(2)45^@)-(...

The value of `(sec^(2)45^@-cot^(2)45^@)-(sin^(2)30^@+sin^(2) 60^(@))` is

A

1

B

`2sqrt3`

C

0

D

`1/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression `(sec^(2)45° - cot^(2)45°) - (sin^(2)30° + sin^(2)60°)`, we will evaluate each component step by step. ### Step 1: Calculate `sec^(2)45°` The secant function is the reciprocal of the cosine function. - We know that `cos(45°) = 1/√2`. - Therefore, `sec(45°) = 1/cos(45°) = √2`. - Now, squaring this gives us: \[ sec^{2}(45°) = (√2)^{2} = 2. \] ### Step 2: Calculate `cot^(2)45°` The cotangent function is the reciprocal of the tangent function. - We know that `tan(45°) = 1`. - Therefore, `cot(45°) = 1/tan(45°) = 1`. - Now, squaring this gives us: \[ cot^{2}(45°) = (1)^{2} = 1. \] ### Step 3: Calculate `sec^(2)45° - cot^(2)45°` Now we can substitute the values we calculated: \[ sec^{2}(45°) - cot^{2}(45°) = 2 - 1 = 1. \] ### Step 4: Calculate `sin^(2)30°` We know that: - `sin(30°) = 1/2`. - Therefore, squaring this gives us: \[ sin^{2}(30°) = (1/2)^{2} = 1/4. \] ### Step 5: Calculate `sin^(2)60°` We know that: - `sin(60°) = √3/2`. - Therefore, squaring this gives us: \[ sin^{2}(60°) = (√3/2)^{2} = 3/4. \] ### Step 6: Calculate `sin^(2)30° + sin^(2)60°` Now we can add the two results: \[ sin^{2}(30°) + sin^{2}(60°) = 1/4 + 3/4 = 4/4 = 1. \] ### Step 7: Combine the results Now we substitute back into the original expression: \[ (sec^{2}(45°) - cot^{2}(45°)) - (sin^{2}(30°) + sin^{2}(60°)) = 1 - 1 = 0. \] ### Final Answer Thus, the value of the expression is: \[ \boxed{0}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(2)30^(@)cos^(2)45^(@)

The value of sin^(2)30^(@).cos^(2)45^(@)+2tan^(2)30^(@)-sec^(2)60^(@) is equal to :

Find the value of cosec^(2)30^(@)sin^(2)45^(@)-sec^(2)60^(@)

The value of (cos^(2)60^(@)+4sec^(2)30^(@)-tan^(2)45^(@))/(sin^(2)30^(@)+cos^(2)30^(@)) is

The value of x, if x cos ^(2) 45 ^(@) - sec ^(2) 60^(@) + sin ^(2) 30^(@) = (1)/(8), is