Home
Class 14
MATHS
If (a-b)=4 and ab = 2, then (a^(3)-b^(3)...

If `(a-b)=4` and ab = 2, then `(a^(3)-b^(3))` is equal to :

A

92

B

88

C

84

D

80

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 - b^3 \) given that \( a - b = 4 \) and \( ab = 2 \). ### Step-by-Step Solution: 1. **Recall the formula for the difference of cubes:** \[ a^3 - b^3 = (a - b)(a^2 + ab + b^2) \] 2. **Substitute the known value of \( a - b \):** We know that \( a - b = 4 \), so we can substitute this into the formula: \[ a^3 - b^3 = 4(a^2 + ab + b^2) \] 3. **Find \( a^2 + ab + b^2 \):** To find \( a^2 + ab + b^2 \), we can use the identity: \[ a^2 + b^2 = (a - b)^2 + 2ab \] First, calculate \( (a - b)^2 \): \[ (a - b)^2 = 4^2 = 16 \] Now substitute \( ab = 2 \): \[ a^2 + b^2 = 16 + 2 \cdot 2 = 16 + 4 = 20 \] Now, substitute \( ab = 2 \) into \( a^2 + ab + b^2 \): \[ a^2 + ab + b^2 = a^2 + b^2 + ab = 20 + 2 = 22 \] 4. **Substitute back into the equation for \( a^3 - b^3 \):** Now we can substitute \( a^2 + ab + b^2 = 22 \) back into the equation: \[ a^3 - b^3 = 4 \cdot 22 = 88 \] 5. **Final answer:** Thus, the value of \( a^3 - b^3 \) is \( 88 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b =5 and ab = 3 , then (a^(3)+b^(3)) is equal to :

If a - b = 5 and ab = 2 , then (a^3-b^3) is equal to: यदि a - b = 5 और ab = 2 है, तो (a^3-b^3) किसके बराबर है?

If (a + b) = 6 and ab = 8 , then (a^3+b^3) is equal to