Home
Class 14
MATHS
If sqrt(x)-(1)/(sqrt(x))=sqrt(5), then (...

If `sqrt(x)-(1)/(sqrt(x))=sqrt(5)`, then `(x^(2)+(1)/(x^(2)))` is equal to :

A

45

B

49

C

47

D

51

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} - \frac{1}{\sqrt{x}} = \sqrt{5} \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Square both sides of the equation We start with the equation: \[ \sqrt{x} - \frac{1}{\sqrt{x}} = \sqrt{5} \] Now, we square both sides: \[ \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 = (\sqrt{5})^2 \] ### Step 2: Expand the left side Using the formula \( (a - b)^2 = a^2 - 2ab + b^2 \), we can expand the left side: \[ \left(\sqrt{x}\right)^2 - 2\left(\sqrt{x}\right)\left(\frac{1}{\sqrt{x}}\right) + \left(\frac{1}{\sqrt{x}}\right)^2 = 5 \] This simplifies to: \[ x - 2 + \frac{1}{x} = 5 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( x + \frac{1}{x} \): \[ x + \frac{1}{x} = 5 + 2 \] \[ x + \frac{1}{x} = 7 \] ### Step 4: Square the result Next, we square \( x + \frac{1}{x} \) to find \( x^2 + \frac{1}{x^2} \): \[ \left(x + \frac{1}{x}\right)^2 = x^2 + 2 + \frac{1}{x^2} \] Substituting \( 7 \) into the equation: \[ 7^2 = x^2 + 2 + \frac{1}{x^2} \] \[ 49 = x^2 + 2 + \frac{1}{x^2} \] ### Step 5: Solve for \( x^2 + \frac{1}{x^2} \) Now, we can isolate \( x^2 + \frac{1}{x^2} \): \[ x^2 + \frac{1}{x^2} = 49 - 2 \] \[ x^2 + \frac{1}{x^2} = 47 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{47} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(x)+(1)/(sqrt(x)) =sqrt(6) , then x^(2)+(1)/(x^(2)) is equal to :