Home
Class 14
MATHS
In Delta ABC, P is a point on BC such th...

In `Delta ABC`, P is a point on BC such that `BP:PC=4:5` and Q is the mid - point of BP. Then area `(Delta ABQ)` : area `(Delta ABC)` is equal to :

A

`1:3`

B

`1:9`

C

`2:9`

D

`2:5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the ratio of the area of triangle ABQ to the area of triangle ABC given the conditions in the question. ### Step-by-Step Solution: 1. **Understanding the Ratios**: - We are given that \( BP:PC = 4:5 \). - Let \( BP = 4x \) and \( PC = 5x \) for some \( x \). 2. **Finding Lengths**: - The total length of \( BC \) can be calculated as: \[ BC = BP + PC = 4x + 5x = 9x \] 3. **Identifying Midpoint Q**: - Since \( Q \) is the midpoint of \( BP \), we have: \[ BQ = QP = \frac{BP}{2} = \frac{4x}{2} = 2x \] 4. **Area of Triangle ABQ**: - The area of triangle \( ABQ \) can be calculated using the formula for the area of a triangle: \[ \text{Area of } \triangle ABQ = \frac{1}{2} \times \text{Base} \times \text{Height} = \frac{1}{2} \times BQ \times h \] - Here, \( BQ = 2x \) and \( h \) is the height from \( A \) to line \( BC \). 5. **Area of Triangle ABC**: - Similarly, the area of triangle \( ABC \) is: \[ \text{Area of } \triangle ABC = \frac{1}{2} \times BC \times h = \frac{1}{2} \times 9x \times h \] 6. **Calculating the Ratio**: - Now, we can find the ratio of the areas: \[ \frac{\text{Area of } \triangle ABQ}{\text{Area of } \triangle ABC} = \frac{\frac{1}{2} \times 2x \times h}{\frac{1}{2} \times 9x \times h} \] - The \( \frac{1}{2} \) and \( h \) cancel out: \[ = \frac{2x}{9x} = \frac{2}{9} \] 7. **Final Result**: - Therefore, the ratio of the area of triangle \( ABQ \) to the area of triangle \( ABC \) is: \[ \frac{\text{Area of } \triangle ABQ}{\text{Area of } \triangle ABC} = \frac{2}{9} \] ### Conclusion: The answer is \( \frac{2}{9} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaABC , P is a point on BC such that BP : PC = 2 : 3 and Q is the midpoint of BP. Then ar (DeltaABQ): ar(DeltaABC) is equal to :

In triangle ABC ,P is a point on BC such that BP : PC = 4:5 and Q is the midpoint of BP. Then ar(triangle ABQ) : ar(triangle ABC) is equal to: त्रिभुज ABC में, P, BC पर स्थित एक ऐसा बिंदु है कि BP : PC = 4:5 है और Q, BP का मध्य बिंदु है | ar(triangle ABQ) : ar(triangle ABC) का मान ज्ञात करें |

In triangle ABC ,P is a point on BC such that BP : PC = 1 : 2 and Q is the mid point of BP. then, ar(triangle ABQ) :ar (triangle ABC) is equal to: त्रिभुज ABC में, P, BC पर स्थित ऐसा बिंदु है कि BP : PC = 1 : 2 है और Q, BP का मध्य बिंदु है | तो ar(triangle ABQ) :ar (triangle ABC) का मान क्या होगा ?

In triangle ABC ,P is a point on BC such that BP : PC = 4 : 11 and Q is the midpoint of BP. Then ar(triangle ABQ) :ar (triangle ABC) is equal to: त्रिभुज ABC में, P, BC पर स्थित एक ऐसा बिंदु है कि BP : PC = 4 : 11 है और Q, BP का मध्य बिंदु है | ar(triangle ABQ) : ar(triangle ABC) का मान किसके बराबर होगा ?

In triangle ABC ,P is a point on BC such that BP : PC = 3 : 4 and Q is the midpoint of BP. Then ar(triangle ABQ) :ar (triangle ABC) is equal to: त्रिभुज ABC में, P, BC पर स्थित एक ऐसा बिंदु है कि BP : PC = 3 : 4 है और Q, BP का मध्य बिंदु है | ar(triangle ABQ) : ar(triangle ABC) का मान ज्ञात करें |

In triangle ABC ,P is a point on BC such that BP : PC = 4 : 3 and Q is the midpoint of BP. Then ar(triangle ABQ) :ar (triangle ACB) is equal to: त्रिभुज ABC में, P, BC पर स्थित एक ऐसा बिंदु है कि BP : PC = 4 : 3 है और Q, BP का मध्य बिंदु है | ar(triangle ABQ) : ar(triangle ACB) का मान ज्ञात करें |

In triangle ABC ,P is a point on BC such that BP : PC = 2 : 3 and Q is the midpoint of BP. Then (triangle ABQ) : (triangle ABC) is equal to: त्रिभुज ABC में, P, BC पर स्थित एक ऐसा बिंदु है कि BP : PC = 2 : 3 है और Q, BP का मध्य बिंदु है | (triangle ABQ) : (triangle ABC) ज्ञात करें |

ABC is a triangle with base AB. D is a point on AB such that AB = 5 and DB = 3. What is the ratio of the area of Delta ADC to the area of Delta ABC ?

D is the mid-point of side BC of Delta ABC and E is the mid-point of BO. If O is the mid-point of AE, then ar( Delta BOE) = 1/k ar( Delta ABC). Then k equals

In a Delta ABC , D and E are two points on BC such that BD : DE : EC = 4 : 5 : 6 If the area of Delta ADE = 30 cm^(2) . find area of Delta ABC