Home
Class 14
MATHS
In a circle with centre O. an arc ABC su...

In a circle with centre O. an arc ABC subtends an angle of `136^(@)` at the centre of the circle. The chord AB is produced to a point P. Then `angle CBP` is equal to :

A

`72^(@)`

B

`44^(@)`

C

`68^(@)`

D

`66^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the properties of circles and angles subtended by arcs and chords. ### Step 1: Identify the Given Information - We have a circle with center O. - An arc ABC subtends an angle of \(136^\circ\) at the center of the circle. - The chord AB is produced to a point P. - We need to find the angle \(CBP\). ### Step 2: Draw the Circle and Label Points - Draw the circle with center O. - Mark points A, B, and C on the circumference such that arc ABC subtends angle \(AOB = 136^\circ\). - Extend the chord AB to point P. ### Step 3: Use the Property of Angles in a Circle According to the property of circles, the angle subtended by an arc at the center (angle AOB) is twice the angle subtended by the same arc at any point on the circumference (angle ACB). Thus, we can write: \[ \angle ACB = \frac{1}{2} \times \angle AOB \] Substituting the given value: \[ \angle ACB = \frac{1}{2} \times 136^\circ = 68^\circ \] ### Step 4: Identify the Cyclic Quadrilateral Since points A, B, C, and D (where D is any point on the circumference) form a cyclic quadrilateral, we can use the property that the sum of opposite angles in a cyclic quadrilateral is \(180^\circ\). ### Step 5: Find Angle ABC Using the cyclic quadrilateral property: \[ \angle ABC + \angle ACB = 180^\circ \] Substituting the value of \(\angle ACB\): \[ \angle ABC + 68^\circ = 180^\circ \] Thus, \[ \angle ABC = 180^\circ - 68^\circ = 112^\circ \] ### Step 6: Find Angle CBP Since AB is extended to point P, angle CBP and angle ABC are supplementary (they form a straight line): \[ \angle ABC + \angle CBP = 180^\circ \] Substituting the value of \(\angle ABC\): \[ 112^\circ + \angle CBP = 180^\circ \] Thus, \[ \angle CBP = 180^\circ - 112^\circ = 68^\circ \] ### Conclusion The angle \(CBP\) is equal to \(68^\circ\). ### Final Answer \(\angle CBP = 68^\circ\) ---
Promotional Banner

Similar Questions

Explore conceptually related problems

In a circle with centre O an are ABC subtends an angle of 140^(@) at the centre of the circle . The chord AB is produced to point P. Then angleCBP is equal to :

In a circle with centre O, an arc ABC subtends an angle of 136^@ at the centre of the circle. Chord AB is produced to point P. Then angle CBP is equal to : केंद्र Oवाले एक वृत्त में, चाप ABC वृत्त के केंद्र पर 136^@ का कोण अंतरित करता है | जीवा AB को बिंदु P तक बढ़ाया जाता है | तो angle CBP का मान क्या होगा ?

In a circle with centre O, an arc ABC subtends an angle of 132^@ at the centre of the circle. Chord AB is produced to point P. Then angle CBP is equal to : केंद्र Oवाले एक वृत्त में, चाप ABC वृत्त के केंद्र पर 132^@ का कोण अंतरित करता है | जीवा AB को बिंदु P तक बढ़ाया जाता है | तो angle CBP का मान क्या होगा ?

In a circle with centre O, an arc ABC subtends an angle of 140^@ at the centre of the circle. Chord AB is produced to point P. Then angle CBP is equal to : केंद्र Oवाले एक वृत्त में, चाप ABC वृत्त के केंद्र पर 140^@ का कोण अंतरित करता है | जीवा AB को बिंदु P तक बढ़ाया जाता है | तो angle CBP का मान क्या होगा ?

In a circle with centre O, an arc ABC subtends an angle of 110^@ at the centre of the circle. Chord AB is produced to point P. Then angle CBP is equal to : केंद्र Oवाले एक वृत्त में, चाप ABC वृत्त के केंद्र पर 110^@ का कोण अंतरित करता है | जीवा AB को बिंदु P तक बढ़ाया जाता है | तो angle CBP का मान ज्ञात करें |

An arc of length 20 pi cm subtends an angle of 144o at the centre of a circle.Find the radius of the circle.

A chord of length 10 cm subtends an angle of 120^(@) at the centre of the circle. Find the distance of the chord from the centre.

In a circle , chord AB subtends an angle of 60^(@) at the centre and chord CD subtends 120^(@) , at it. Then which chord is longer ?

Find,in terms of pi, the length of the arc that subtends an angle of 30o at the centre of a circle of radius 4cm.