Home
Class 14
MATHS
If a+b+c=8 and ab+bc+ca=20, then a^(3)+b...

If `a+b+c=8` and `ab+bc+ca=20`, then `a^(3)+b^(3)+c^(3)-3abc` is equal to :

A

30

B

24

C

32

D

36

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \) given that \( a + b + c = 8 \) and \( ab + bc + ca = 20 \). ### Step 1: Use the identity for \( a^3 + b^3 + c^3 - 3abc \) We can use the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c) \left( (a + b + c)^2 - 3(ab + ac + bc) \right) \] ### Step 2: Substitute the known values From the problem, we know: - \( a + b + c = 8 \) - \( ab + ac + bc = 20 \) Substituting these values into the identity: \[ a^3 + b^3 + c^3 - 3abc = 8 \left( 8^2 - 3 \times 20 \right) \] ### Step 3: Calculate \( 8^2 \) Calculate \( 8^2 \): \[ 8^2 = 64 \] ### Step 4: Calculate \( 3 \times 20 \) Calculate \( 3 \times 20 \): \[ 3 \times 20 = 60 \] ### Step 5: Substitute back into the equation Now substitute back into the equation: \[ a^3 + b^3 + c^3 - 3abc = 8 \left( 64 - 60 \right) \] ### Step 6: Simplify the expression Simplify the expression inside the parentheses: \[ 64 - 60 = 4 \] ### Step 7: Final calculation Now calculate: \[ a^3 + b^3 + c^3 - 3abc = 8 \times 4 = 32 \] Thus, the final answer is: \[ \boxed{32} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a+b+c=8 and ab +bc +ca =12 , then a^(3) +b^(3) +c^(3) -3abc is equal to :

If a + b + c = 8 and ab + bc + ca = 12, then a^3+b^3+c^3-3abc is equal to: यदि a + b + c = 8 है और ab + bc + ca = 12 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?

If a + b + c = 4 and ab + bc + ca = 2 , then a^3+b^3+c^3-3abc is equal to: यदि a + b + c = 4 है और ab + bc + ca = 2 है, तो a^3+b^3+c^3-3abc का मान क्या होगा ?