Home
Class 12
MATHS
If z1=1+sqrt(3)i , z2=1-sqrt(3)i, then (...

If `z_1=1+sqrt(3)i , z_2=1-sqrt(3)i,` then `(z_1^100+z_2^100)/(z_1+z_2)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1)=1+i sqrt(3) , z_(2)=1-i sqrt(3), then (z_(1)^(100)+z_(2)^(100))/(z_(1)+z_(2))=

If z_(1)=sqrt(3)-i, z_(2)=1+i sqrt(3) , then amp (z_(1)+z_(2))=

If z_(1)=1+i, z_(2)=sqrt(3)+i, then arg ((z_(1))/(z_(2)))^(50)=

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

if z_1=1+isqrt3 , z_2=sqrt3-i show that (a)arg (z_1z_2)=arg(z_1)+arg(z_2) and (b) arg(z_1//z_2)=arg(z_1)-arg(z_2)

If z_(1)=1+i,z_(2)=sqrt(3)+i then arg((z_(1))/(z_(2)))^(50) is

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

If z _(1) = 2 sqrt2 (1 + i) and z _(2) = 1 + isqrt3, then z _(1) ^(2) z _(2) ^(3) is equal to