Home
Class 12
MATHS
The number of 3xx3 skew-symmetric matri...

The number of `3xx3` skew-symmetric matrices `A= [a_(ij)]` such that `a_(ij) +a_(ji) =0` for all `i,j=1, 2, 3 and |a_(ij)| in {0,1,2,3,4,5,6,7,8,9}` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of 3xx3 skew-symmetric matrices A=[a_(ij)] such that a_(ij)+a_(ji)=0 for all i,j=1,2,3 and |a_(ij)|in{0,1,2,3,4,5,6,7,8,9} is equal to

If A=[a_(ij)]_(2×3) such that a_(ij)=i+j then a 11=

Construct a 3xx3 matrix A=[a_(ij)] where a_(ij)=2(i-j)

Construct a 3xx4 matrix [a_(ij)] , where a_(ij)=2i-j .

Detemine the matrix A = (a_(ij))_(3 xx 2) if a_(ij) = 3i - 2j

Consider a 2xx2 matrix A=[a_(ij)] where a_(ij)=abs(2i-3j) Write A

if A=[a_(ij)]_(3xx3) such that a_(ij)=2 , i=j and a_(ij)=0 , i!=j then 1+log_(1/2) (|A|^(|adjA|))

If A=[a_(ij)]_(3xx3) is a scalar matrix such that a_(ij)=5" for all "i=j," then: "|A|=

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .

Construct a matrix [a_(ij)]_(3xx3) , where a_(ij)=2i-3j .