Home
Class 12
MATHS
Prove the identity; (log)a Ndot(log)b N+...

Prove the identity; `(log)_a Ndot(log)_b N+(log)_b Ndot(log)_c N+(log)_c Ndot(log)_a N=((log)_a Ndot(log)_b Ndot(log)_c N)/((log)_(a b c)N)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the identity; (log)_a N* (log)_b N+(log)_b N * (log)_c N+(log)_c N * (log)_a N=((log)_a N*(log)_b N*(log)_c N)/((log)_(a b c)N)

Prove the identity; (log)_(a)N log_(b)N+(log)_(b)N log_(c)N+(log)_(c)N log_(a)N=((log)_(a)N log_(b)N log_(c)N)/((log)_(abc)N)

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Prove that ((log)_a N)/((log)_(a b)N)=1+(log)_a b

Prove that ((log)_(a)N)/((log)_(ab)N)=1+(log)_(a)b

prove identity log_(a)N*log_(b)N+log_(b)N*log_(c)N+log_(c)N log_(a)N=(log_(a)N*log_(b)N log_(c)N)/(log_(abc)N)

Compute the following a^(((log)_b((log)_a N))/((log)_b(log a)))

Compute the following a^(((log)_b((log)_a N))/((log)_b a))

Compute the following a^(((log)_b((log)_a N))/((log)_b\ \ a))

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .