Home
Class 11
MATHS
Prove that (n-r+1)((n!)/((n-r+1)!))=((n!...

Prove that `(n-r+1)((n!)/((n-r+1)!))=((n!)/((n-r)!))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((n-1)!)/((n-r-1)!)+r.((n-1)!)/((n-r)!)=(n!)/((n-r)!)

Prove that: n(n-1)(n-2)....(n-r+1)=(n !)/((n-r)!)

Prove that n(n-1)(n-2) ...(n-r+1)=(n!)/((n-r)!).

Prove that: n(n-1)(n-2)…..(n-r+1)=(n!)/((n-r)!)

Prove that n(n-1)(n-2)......(n-r+1)=(n!)/(n-r)!

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Prove that : (i) (n!)/(r!)=n(n-1)(n-2)...(r+1) (ii) (n-r+1)*(n!)/((n-r+1)!)=(n!)/((n-r)!) (iii) (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)=((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!) =((n+1)!)/(r!(n-r+1)!)

Prove that (n!)/(r!(n-r)!)+(n!)/((r-1)!(n-r+1)!)= ((n+1)!)/ (r!(n-r+1)!) .