Home
Class 12
MATHS
The equation of a curve passing through ...

The equation of a curve passing through origin is given by `y = int x^(3) cos x^(4) dx ` . If the equation of the curve is wirtten in the form x = g(y) , then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let the equation of a curve passing through the point (0,1) be given by=int x^(2)e^(x^(3))dx. If the equation of the curve is written in the form x=f(y), then f(y) is

Let the equation of a curve passing through the point (0,1) be given b y=intx^2e^(x^3)dx . If the equation of the curve is written in the form x=f(y) , then f(y) is

The equation of the curve passing through the origin and satisfying (dy)/(dx) + y = e^(x) is

The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is

The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is

The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is

The slope of the tangent at (x , y) to a curve passing through (1,pi/4) is given by y/x-cos^2(y/x), then the equation of the curve is

The slope of the tangent at (x,y) to a curve passing through (1,pi//4) is given by y/x -cos^2""(y)/(x) , then the equation of the curve is :

The equation of curve passing through (1,3) whose slope at any point (x,y) on it is y//x^(2) is given by