Home
Class 8
MATHS
A=([5,1,2],[6,3,4]) find the value of a(...

`A=([5,1,2],[6,3,4])` find the value of `a_(12)+a_(13)-a_(22)" `

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[3,4,5],[1,6,7],[2,8,3]] ,then the value of a_(21)A_(11)+a_(22)A_(12)+a_(23)A_(13) is equal to

If (1+x-2x^(2))^(6) = 1 + a_(1)x+a_(2)x^(2) + "……" + a_(12)x^(12) , then find the value of a_(2) + a_(4) +a_(6)+ "……" + a_(12) .

Let A = [ a_(ij) ] be a square matrix of order 3xx 3 and |A|= -7. Find the value of a_(11) A_(11) +a_(12) A_(12) + a_(13) A_(13) where A_(ij) is the cofactor of element a_(ij)

If (1+x-2x^(2))^(6)=1+a_(1)x+a_(2)x^(2)+….+a_(12)^(x^(12)) , then find the value of a_(2)+a_(4)+a_(6)+….+a_(12) .

If a_(1),a_(2),a_(3),"........" is an arithmetic progression with common difference 1 and a_(1)+a_(2)+a_(3)+"..."+a_(98)=137 , then find the value of a_(2)+a_(4)+a_(6)+"..."+a_(98) .

If a_(1),a_(2),a_(3),"........" is an arithmetic progression with common difference 1 and a_(1)+a_(2)+a_(3)+"..."+a_(98)=137 , then find the value of a_(2)+a_(4)+a_(6)+"..."+a_(98) .

If a_(1),a_(2),a_(3),"........" is an arithmetic progression with common difference 1 and a_(1)+a_(2)+a_(3)+"..."+a_(98)=137 , then find the value of a_(2)+a_(4)+a_(6)+"..."+a_(98) .

If a_(1),a_(2),a_(3),"........" is an arithmetic progression with common difference 1 and a_(1)+a_(2)+a_(3)+"..."+a_(98)=137 , then find the value of a_(2)+a_(4)+a_(6)+"..."+a_(98) .

If (1+x-2x^(2))^(6)=1+a_(1)x+a_(2)x^(12)+...+a_(12)x^(12) then find the value of a_(2)+a_(4)+a_(6)+...+a_(12)

If a_(1)+a_(2)+a_(3)+a_(4)+a_(5)...+a_(n) for all a_(i)>0,i=1,2,3dots n. Then the maximum value of a_(1)^(2)a_(2)a_(3)a_(4)a_(5)..a_(n) is