Home
Class 12
MATHS
If 1,1,alpha are the roots of x^3-6x^3+...

If `1,1,alpha` are the roots of `x^3-6x^3+9x-4=0` then `alpha=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of x^(3)-9x^(2)+26x-24=0 then sum(alpha+3)(beta+3)=

If alpha,beta are the roots of x^(2)+x+3=0 then 5 alpha+alpha^(4)+alpha^(3)+3 alpha^(2)+5 beta+3=

if alpha,beta, gammaare the roots of x^(3)-3x^(2)+3x+7=0 then (alpha-1)/(beta-1)+(beta-1)/(gamma-1)+(gamma-1)/(alpha-1)

If alpha,beta are the roots of x^(2)+7x+3=0 ,then (alpha-1)^(2)+(beta-1)^(2)=

If alpha,beta and 1 are the roots of x^(3)-2x^(2)-5x+6=0 then (alpha,beta)=

If alphaandbeta are the roots of 2x^(2)-6x+3=0 , then the value of ((alpha)/(beta)+(beta)/(alpha))+3((1)/(alpha)+(1)/(beta))+2alphabeta is

If alpha and beta are the roots of 2x^(2) - x - 2 = 0 , then (alpha^(3) + beta^(-3) + 2alpha^(-1) beta^(-1)) is equal to

If -1,2,alpha are the roots of the equation 2x^(3)+x^(2)-7x-6=0, then alpha is

If alpha and beta are the roots of 4x^(2) + 3x +7 =0 then the value of 1/alpha + 1/beta is