Home
Class 12
MATHS
त्रिभुज OAC मे यदि B, भुजा AC का मध्य-बि...

त्रिभुज OAC मे यदि B, भुजा AC का मध्य-बिंदु हो तथा `vec(OA)=veca,vec(OA)=vecb` हो, तो `vec(OC)` क्या होगा?

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle OAC, if B is the mid point of side AC and vec(OA)=veca,vec(OB)=vecb , then what is vec(OC) .

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

Statement 1 : In DeltaABC , vec(AB) + vec(BC) + vec(CA) = 0 Statement 2 : If vec(OA) = veca, vec(OB) = vecb , then vec(AB) = veca + vecb

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

Orthocenter of an equilateral triangle ABC is the origin O. If vec(OA)=veca, vec(OB)=vecb, vec(OC)=vecc , then vec(AB)+2vec(BC)+3vec(CA)=

If OACB is a parallelogramwith vec(OC) = vec a and vec (AB) = vec b, " then " vec(OA)=