Home
Class 12
MATHS
I : The range of the function f(x)=cos[x...

I : The range of the function `f(x)=cos[x]" for "-pi//2 lt x lt pi//2` is `{1, cos 1, cos 2}`.
II. Every periodic function is one one.

Promotional Banner

Similar Questions

Explore conceptually related problems

The range of the function f(x) = cos[x] where -pi/2 lt x lt pi/2 is

Write the range of the function f(x)=cos[x] where -(pi)/(2)

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The primitive of the function f(x)= x | cos x| , when pi/2 lt x lt pi is given by

The range of the function f(x)=cos[x] , -pi//4 lt x lt pi//4 , where [x] denotes the greatest integer lex , is :

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is

The primitive of the function f(x)=(2x+1)|sin x| , when pi lt x lt 2 pi is