Home
Class 12
MATHS
If vec(a)=(2,1,-1), vec(b)=(1,-1,0), vec...

If `vec(a)=(2,1,-1), vec(b)=(1,-1,0), vec(c)=(5, -1,1)`, then what is the unit vector parallel to `vec(a)+vec(b)-vec(c)` in the opposite direction ?

Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a)= (2, 1, -1), vec(b) = (1, -1, 0), c= (5, -1, 1) , then what is the unit vector parallel to vec(a) +vec(b)- vec(c ) in the oppoiste direction?

If vec a =(2,3,6) , vec b=(2,-2,1) , vec c=(-1,0,2) , find the direction cosines of vec b -vec a+2vec c and the unit vector in direction of vec b -vec a + 2vec c .

If vec(a) is a unit vector and vec(b)=(2,1,-1) and vec( c )=(1,0,3) . Then the maximum value of [vec(a)vec(b)vec( c )] is…………..

If vec a=(-1,1,2);vec b=(2,1,-1);vec c=(-2,1,3) then the angle between 2vec a-vec c and vec a+vec b is

If |vec(a)|=3, |vec(b)|=1, |vec(c )|=4 and vec(a) +vec(b) + vec( c)=0 , then the value of vec(a).vec(b) + vec(b).vec(c )+vec(c ).vec(a) is equal to

If vec(A)+vec(B)+vec(C)=0 and |vec(A)|=4,|vec(B)|=5 and |vec(C)|=1 , then the angle between vectors vec(B) and vec(C) is equal to

If vec(a),vec(b) and vec(c) are unit vectors such that vec(a)+vec(b)+vec(c)=0 , then 3vec(a).vec(b)+2vec(b).vec(c)+vec(c).vec(a)=

If vec(a), vec(b), vec(c ) are unit vectors such that vec(a) + vec(b) + vec(c )= vec(0), " then " vec(a).vec(b) + vec(b).vec(c ) + vec(c ).vec(a) =