Home
Class 11
MATHS
If 3tanalpha=4tanbeta, then prove that t...

If `3tanalpha=4tanbeta`, then prove that `tan(alpha-beta)=(sinbeta*cosbeta)/(3+sin^2beta)=(tanbeta)/(4tan^2beta+3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tan alpha=3tan beta, prove that tan(alpha-beta)=(sin2 beta)/(5-cos2 beta)

If 2tanalpha=3 tanbeta , show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If 2tanalpha=3tanbeta , then prove that then show that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

if 3tan alpha=4tan beta then prove that tan(alpha-beta)=(tan beta)/(4tan^(2)beta+3)=(sin beta*cos beta)/(3+sin^(2)beta)

If tan beta=3tan alpha, prove that tan(alpha+beta)=(2sin2 beta)/(1+cos2 beta)

If tan(alpha-beta)=(sin 2beta)/(3-cos2beta) , then

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

Prove that tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)