Home
Class 12
MATHS
सदिशों bar(a)=bar(i)+2bar(j)+3bar(k) और ...

सदिशों `bar(a)=bar(i)+2bar(j)+3bar(k)` और `bar(b)=3bar(i)-2bar(j)+bar(k)` का अदिश गुणनफल ज्ञात कीजिए |

Promotional Banner

Similar Questions

Explore conceptually related problems

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

If bar(a) = bar(i) + 2bar(j) + 3bar(k), bar(b) = 3bar(i) +5bar(j) -bar(k) are 2 sides of a triangle, find its area.

If bar(a) = 2bar(i) + 2bar(j) - 3bar(k), bar(b) = 3bar(i) - bar(j) + 2bar(k) then find the angle between 2bar(a)+bar(b) and bar(a) + 2bar(b) .

If bar(OP)=2bar(i)+3bar(j)-bar(k), bar(OQ)=3bar(i)-4bar(j)+2bar(k) then d.c's of bar(PQ) are

If bar(a) = 2bar(i) - 3bar(j) + bar(k) and bar(b) = bar(i) + 4bar(j) -2bar(k) , then find (bar(a) + bar(b))xx(bar(a)-bar(b))

If bar(a) = 2bar(i) + 3bar(j) + 4bar(k), bar(b) = bar(i) + bar(j) -bar(k), bar(c ) = bar(i) - bar(j) + bar(k) , compute bar(a)x(bar(b)xbar(c )) and verify that it is perpendicular to bar(a) .

If bar(a)=bar(i)+2bar(j)+2bar(k) and bar(b)=3bar(i)+6bar(j)+2bar(k) then the vector in the direction of bar(a) and having magnitude as abs(bar(b)) is

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

If the vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) + 2bar(j)-3bar(k), bar(c ) = 3bar(i) + pbar(j) +5bar(k) are coplanar then find p.

Prove that vectors bar(a) = 2bar(i) -bar(j) + bar(k), bar(b) = bar(i) -bar(3j)-5bar(k) and bar(c ) = 3bar(i) - 4bar(j) -4bar(k) are coplanar.