Home
Class 11
MATHS
If f(x) =Pi(i=1)^3(x-ai) + sum(i=1)3 ai ...

If `f(x) =Pi_(i=1)^3(x-a_i) + sum_(i=1)_3 a_i - 3x` where `a_i < a_(i+1)` for i = 1,2, then f(x) = 0 have

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= prod_(i=1)^3 (x-a_i) +sum_(i=1)^3a_i-3x where a_i lt a_(i+1) forall i=1,2,. . . then f(x)=0 has

If f(x)=Pi_(i=1)^(3)(x-a_(i))+sum_(i=1)-3a_(i)-3x where a_(i)

Let f(x)=x^2 + 3x-3,x leq 0 . If n points x_1, x_2, x_3,.....,x_n are so chosen on the x-axis such that (1) 1/n sumf^-1(x_i)=f(1/n sum_( i=1 )^nx_i) (2) sum_(i=1) ^ n f^-1(x_i)=sum_(i=1) ^ n x_i where f^-1 denotes the inverse of f, Then the AM of xi's is a)1 b)2 c)3 d)4

If b_i=1-a_i ,n a=sum_(i=1)^n a_i ,n b=sum_(i=1)^n b_i ,t h e nsum_(i=1)^n a_i ,b_i+sum_(i=1)^n(a_i-a)^2= a b b. n a b c. (n+1)a b d. n a b

If b_i=1-a_i na = Sigma_(i=1)^(n) a_i, nb = Sigma_(i=1)^(n) b_i " then " Sigma_(i=1)^(n) a_b_i+Sigma_(i=1)^(n)(a_i-a)^2=

a_1,a_2,a_3 ,…., a_n from an A.P. Then the sum sum_(i=1)^10 (a_i a_(i+1)a_(i+2))/(a_i + a_(i+2)) where a_1=1 and a_2=2 is :

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"

If sum_(i=1)^(7) i^(2)x_(i) = 1 and sum_(i=1)^(7)(i+1)^(2) x_(i) = 12 and sum_(i=1)^(7)(i+2)^(2)x_(i) = 123 then find the value of sum_(i=1)^(7)(i+3)^(2)x_(i)"____"