Home
Class 12
MATHS
Let zk = cos(2kpi/10)+isin(2kpi/10); k=1...

Let `z_k = cos(2kpi/10)+isin(2kpi/10); k=1,2,34,...,9` (A) For each `z_k` there exists a `z_j` such that `z_k.z_j=1` (ii) there exists a `k in {1,2,3,...,9}` such that `z_1 z = z_k`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(k) = cos((2kpi)/(10)) -isin ((2kpi)/(10)), k = 1,2,…..,9

Let z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10)) ,k=1,2,…,9. Then match the column

If z_k=cos((kpi)/(10))+isin((kpi)/(10)) , then z_1z_2z_3z_4 is equal to

Let z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9 . Then, 1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|} equals

Let z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9 . Then, 1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|} equals

If z_(k)=cos((kpi)/(10))+isin((kpi)/(10)) , then z_(1)z_(2)z_(3)z_(4) is equal to

If z_(k)=cos.(pi)/(2^(k))+isin.(pi)/(2^(k)) , k=1,2............ , then the value of z_(1)z_(2) ...............to oo is

If z_(k)=cos((k pi)/(10))+i sin((k pi)/(10)), then z_(1)z_(2)z_(3)z_(4) is equal to (A)-1 (B) 2(C)-2 (D) 1