Home
Class 12
MATHS
"Let "plambda^(4) + qlambda^(3) +rlambda...

`"Let "plambda^(4) + qlambda^(3) +rlambda^(2) + slambda +t =|{:(lambda^(2)+3lambda,lambda-1, lambda+3),(lambda+1, -2lambda, lambda-4),(lambda-3, lambda+4, 3lambda):}|` be an identity in `lambda`,
where p,q,r,s and t are constants. Then, the value of t is..... .

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p lambda^4+qlambda^3+rlambda^2+slambda+t = |{:(lambda^2+3lambda,lambda-1,lambda-3),(lambda-1,-2lambda,lambda-4),(lambda-3,lambda+3," "3lambda):}| be an identity in lambda where p,q,r,s and t are constants. Then the value of t is

Let plambda^(4)+qlambda^(3)+rlambda^(2) + slambda+t= |{:(lambda^(2)+3lambda,,lambda-1,,lambda+3),(lambda+1 ,,-2lambda,,lambda-4),(lambda-3,,lambda+4,,3lambda):}| be an indentity in lambda p,q, r s and r are constants. Then find the value of t.

Let p lambda^(4)+q lambda^(3)+r lambda^(2)+s lambda+t=|[lambda^(2)+3 lambda,lambda-1,lambda-3],[lambda-1,-2 lambda,lambda-4],[lambda-3,lambda+3,3 lambda]| be an identity in lambda ,where p,q,r,s and t are constants.Then the value of t is

If plambda^4+qlambda^3+rlambda^2+slambda+t=|(lambda^2+3lambda,lambda-1,lambda+3),(lambda+1,2-lambda,lambda-4),(lambda-3,lambda+4,3lambda)|, then value of t is

If plambda^4+qlambda^3+rlambda^2+slambda+t=|(lambda^2+3lambda,lambda-1,lambda+3),(lambda+1,2-lambda,lambda-4),(lambda-3,lambda+4,3lambda)|, then value of t is

p(lambda)^4+q(lambda)^3+r(lambda)^2+s(lambda)+t = |((lambda^2 + 3lambda) , lambda -1 , lambda+3) , (lambda +1 , -2lambda , lambda-4 ) ,(lambda-3 , lambda+4 , 3lambda)| find t=?

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=

If plambda^4+qlambda^3+rlambda^2+slambda+t=|[lambda^2+3lambda, lambda-1, lambda+3] , [lambda^2+1, 2-lambda, lambda-3] , [lambda^2-3, lambda+4, 3lambda]| then t=