Home
Class 9
MATHS
(5^(n+2)-6xx5^(n+1))/(13xx5^n-2xx5^(n+1)...

`(5^(n+2)-6xx5^(n+1))/(13xx5^n-2xx5^(n+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

On simplification factor of ""((5^(n+2)-6*5^(n+1))/(13*5^n-2*5^(n+1))) is

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

Simplify : (5^(n+3)-6xx5^(n+1))/(9xx5^(n)-5^(n)xx2^(2))

(5^(n+3) -6xx5^(n+1))/(9xx5^n-5^nxx2^2)=?

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Simplify : (5^(n+4)-6xx5^(n+2))/(9xx5^(n+1)-5^(n+1)xx4)

Simplify each of the following: (a)\ (7^n-3\ xx\ 7^(n+1))/(20\ xx\ 7^n-2\ xx\ 7^n) (b)\ (5^n-6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2xx\ 5^n) (c)\ (16\ xx\ 2^(n+1)-4\ xx\ 2^n)/(16\ xx\ 2^(n+2)-2\ xx\ 2^(n+2))

Simplify each of the following: (a)\ (7^n-3\ xx\ 7^(n+1))/(20\ xx\ 7^n-2\ xx\ 7^n) (b)\ (5^n-6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2xx\ 5^n) (c)\ (16\ xx\ 2^(n+1)-4\ xx\ 2^n)/(16\ xx\ 2^(n+2)-2\ xx\ 2^(n+2))

Find the value of n : (2^(3)xx5^(n+1)xx10^(2)xx5^(n-1))/(125xx5^(n-2)xx2^(7))=(25)/(4)

Simplify: (10xx5^(n+1)+25xx5^n)/(3xx5^(n+2)+10xx5^(n+1)) (ii) ((16)^7xx(25)^5xx(81)^3)/((15)^7xx(24)^5xx(80)^3)