Home
Class 11
MATHS
log(0. 5 x)x^2-14log(16 x)x^3+40log(4x)s...

`log_(0. 5 x)x^2-14log_(16 x)x^3+40log_(4x)sqrt(x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

log_(x)2x<=sqrt(log_(x)(2x^(3)))

The number of solutions of the equation log_(x//2)x^(2) + 40 log_(4x)sqrt(x) - 14 log_(16x) x^(3)=0 is

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

If log_(sqrt(2)) sqrt(x) +log_(2)(x) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

If log_(sqrt(2)) sqrt(x) +log_(2)x + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-

solve for x if log_(4)log_(3)log_(2)x=0 and log_(e)log_(5)(sqrt(2x+2)-3)=0

If log_(sqrt(2)) sqrt(x) +log_(2) + log_(4) (x^(2)) + log_(8)(x^(3)) + log_(16)(x^(4)) = 40 then x is equal to-