Home
Class 11
MATHS
log(0.5 x)x^2-14log(16 x)x^3+40log(4x)sq...

`log_(0.5 x)x^2-14log_(16 x)x^3+40log_(4x)sqrt(x)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

log_(0.5x)x^(2)-14log_(16x)x^(3)+40log_(4x)sqrt(x)=0

sqrt(log_(2)(2x^(2))log_(4)(16x))=log_(4)x^(3)

The number of solutions of the equation log_(x//2)x^(2) + 40 log_(4x)sqrt(x) - 14 log_(16x) x^(3)=0 is

log_(sqrt(2))sqrt(x)+log_(2)x log_(4)(x^(2))+log_(8)(x^(3))+log_(16)(x^(4))=40 then x is equal to

solve for x if log_(4)log_(3)log_(2)x=0 and log_(e)log_(5)(sqrt(2x+2)-3)=0

Solve the value of x:2(log_(x)sqrt(5))^(2)-3log_(x)sqrt(5)+1=0

The positive integral solution of the equation log_(x)sqrt(5)+log_(x)5x=(9)/(4)+log_(x)^(2)sqrt(5) is:

Solve for x: a) log_(0.5)(x^(2)-5x+6) ge -1 , b) log_(1//3)(log_(4)(x^(2)-5)) gt 0

log_(x)4+log_(x)16+log_(x)64=12