Home
Class 10
MATHS
If quadratic polynomial F (x) = px^2 + q...

If quadratic polynomial `F (x) = px^2 + qx + r` roots are `alpha , beta ` then find the value of `1/(palpha+q)+1/(pbeta+q)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-px+q, then find the values of (i)alpha^(2)+beta^(2)( ii) (1)/(alpha)+(1)/(beta)

If alpha and beta are roots of the quadratic polynomial f(x)=px^(2)+qx+r ;then find the value of (i) alpha^(2)+beta^(2)( ii) (alpha)/(beta)+(beta)/(alpha) (iii) (1)/(alpha^(3))+(1)/(beta^(3))( iv )(alpha^(2))/(beta)+(beta^(2))/(alpha)

If alphaa n dbeta are the zeros of the quadratic polynomial f(x)=x^2-p x+q , then find the values of (i)alpha^2+beta^2 (ii) 1/alpha+1/beta

Consider the quadratic polynomial 'f(x)=x^(2)-px+q' where 'f(x)=0' has prime roots alpha and beta and 'p=alpha+beta' , 'q=alpha beta' .If 'p+q=11' and 'a=p^(2)+q^(2)' then find the value of 'f(a)/100' where a is an odd positive integer.

IF alpha,beta be the roots of the equation px^2+qx+r=0 ,find the value of 1/(palpha+q)^3+1/(pbeta+q)^3 .

Let alpha and beta be the roots of equation px^2 +qx+r =0 , p ne 0, if p,q, r are in A.P and (1)/ alpha +(1)/( beta ) =4 then the value of | alpha - beta | is

Let alpha and beta the roots of equation px^(2) + qx + =0 p ne 0 if p,q,r are in A.P and (1)/(alpha) + (1)/(beta) =4 then the value of |alpha -beta| is :

The roots of the quadratic equation x^2+px+q is alpha and beta Then find the value of (alpha/beta+2)(beta/alpha+2)

Let alpha and beta be the roots of equation px^2 + qx + r = 0 , p != 0 .If p,q,r are in A.P. and 1/alpha+1/beta=4 , then the value of |alpha-beta| is :