Home
Class 12
MATHS
If f={(a, 0), (b, -2), (c, 3)}, g={a, -2...

If `f={(a, 0), (b, -2), (c, 3)}, g={a, -2), (b, 0), (c,1)}` then `f//g=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f={(a, 1), (b, -2), (c, 3)}, g={(a, -2), (b, 0), (c, 1)} then f^(2)+g^(2)=

If f={(a, 0), (b, 2), (c, -3)}, g={(a, -1), (b, 1), (c, 2)} then 2f-3g=

If ={(a,1),(b,-2),(c,3)},g={(a,-2),(b,0),(c,1)} then f^(2)+g^(2)=

A={a, b, c}, B={2, 1, 0}, f={(a, 2), (b, 0), (c, 2)}. Then f is

Let A={1,2,3},B={a,b,c),C={p,q,r}. If f:A to B, g: B to C are defined by f={(1,a),(2,c),(3,b)},g={a,q),(b,r),(c,p)} then show that f^(-1)og^(-1)=(gof)^(-1) .

If f and g are two real functions defined by f={(a,1)(b,0),(c,8),(0,4)} and g={(a,5),(c,-3),(b,6)(0,2)} then dom ((sqrt(g))/(f)) is

If f(x) = {{:(x - 3",",x lt 0),(x^(2) - 3x + 2",",x ge 0):} , then g(x) = f(|x|) is a. g'(0^(+)) = - 3 b. g'(0^(-)) = -3 c. g'(0^(+)) = g'(0^(-)) d. g(x) is not continuous at x = 0

If A={1,2,3},B=(alpha,beta,gamma),c=(p,q,r) and (f:A to B,g:B to C are defined by f={(1,alpha),(2,gamma),(3,beta)},g={(alpha,q),(gamma,p)} then show that f and g are bijective functions and (gof)^(-1)=f^(-1)og^(-1).

Consider f:(1,2,3) rarr (a,b,c) and g:(a,,c) rarr (apple, ball, cat) defined as f(1) = a,f(2) = b, f(3) = c, g (a) = apple, g (b) = ball, g(c ) = cat. Find (gof)