Home
Class 12
MATHS
If log (x^2+y^2)=t a n^(-1)\ (y/x), then...

If log `(x^2+y^2)=t a n^(-1)\ (y/x),` then show that `(dy)/(dx)=(x+y)/(x-y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^2+y^2)=2t a n^(-1)\ (y/x), then show that (dy)/(dx)=(x+y)/(x-y)

If log (x^(2)+y^(2))=tan^(-1)((y)/(x)), then show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x), show that (dy)/(dx)=(x+y)/(x-y)

If log sqrt(x^2 + y^2) = tan^-1 (y//x) , then show that dy/dx = (x+y)/(x-y)

If log(x^2+y^2)=2tan^(-1)(y/x) , then, show that dy/dx=(x+y)/(x-y)

If log(x^(2)+y^(2))=2tan^(-1)((y)/(x)), show that (dy)/(dx)=(x+y)/(x-y)