Home
Class 11
MATHS
If a + ib = c + id, then (A) a^2+c^2=0 (...

If a + ib = c + id, then (A) a^2+c^2=0 (B) b^2+c^2=0 (C) b^2+d^2=0 (D) a^2+b^2= c^2+d^2

Promotional Banner

Similar Questions

Explore conceptually related problems

In an equilateral triangle A B C if A D_|_B C , then A D^2 = (a) C D^2 (b) 2C D^2 (c) 3C D^2 (d) 4C D^2

If (a + ib) (c + id) (e + if) (g + ih) = A + iB , then show that (a^2 + b^2) (c^2 + d^2) (e^2 +f^2) (g^2+ h^2) = A^2 + B^2

If (a+ib)(c+id)(e+if)(g+ih) = A+ iB, then show that ( a^2 + b^2 ) ( c^2 + d^2 )( e^2 + f^2 )( g^2 + h^2 )= ( A^2 + B^2 )

In an equilateral triangle A B C if A D_|_B C , then A D^2 = (a)C D^2 (b) 2C D^2 (c) 3C D^2 (d) 4C D^2

The statement (a+i b)<(c+i d) is true for a^2+b^2=0 (b) b^2+d^2=0 b^2+c^2=0 (d) None of these

If a : b = c : d , then prove that (a + c) : (b + d) = sqrt(a^(2) - c^(2)) : sqrt(b^(2) - d^(2))

If (x+iy) = sqrt((a+ib)/(c+id)) then prove that (x^2 + y^2)^2 = (a^2 + b^2)/(c^2 + d^2)

If a ,b ,c ,d are in G.P, then (b-c)^2+(c-a)^2+(d-b)^2 is equal to (a-d)^2 b. (a d)^2 c. (a+d)^2 d. (a//d)^2

Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4a x+""2a y+c=""0 and 5b x+""2b y+d=""0 lies in the fourth quadrant and is equidistant from the two axes then (1) 2b c-3a d=""0 (2) 2b c+""3a d=""0 (3) 3b c-2a d=""0 (4) 3b c+""2a d=""0

If a+b+c=0 , then (a^2)/(b c)+(b^2)/(c a)+(c^2)/(a b)=?\ (a)0 (b) 1 (c) -1 (d) 3