Home
Class 12
MATHS
Find | vec a- vec b|, if two vector ...

Find `| vec a- vec b|,` if two vector ` vec a` and ` vec b` are such that `| vec a|=2,| vec b|=3` and ` vec adot vec b=4` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find |vec a - vec b| , if two vectors vec a and vec b are such that |vec a | = 2, |vec b| = 3 and vec a.vec b = 4 .

Find |vec a-vec b|, if two vector vec a and vec b are such that |vec a|=2,|vec b|=3 and vec avec b=4

Find |vec a-vec b|, if two vectors vec a and vec b are such that |vec a|=2, and |vec b|=3 and |vec a*vec b|=4

Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)| = 2 , |vec(b)| = 3 and vec (a) . vec (b) = 4

Find |vec(a)-vec(b)| , if two vectors vec(a) and vec(b) are such that |vec(a)|=2,|vec(b)|=3 and vec(a).vec(b)=4 .

If two vectors vec a and vec b such that |vec a|=2, |vec b|= 3 and vec a.vec b = 4 , find |vec a - vec b|

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=5\ a n d\ vec adot vec b=8