Home
Class 12
MATHS
If sin2theta=cos3thetaa n dtheta is an a...

If `sin2theta=cos3thetaa n dtheta` is an acute angle, then `sintheta` equal `(sqrt(5)-1)/4` (b) `-((sqrt(5)-1)/4)` `(sqrt(5)+1)/4` (d) `(-sqrt(5)-1)/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

If sin2theta=cos3theta"and"theta is an acute angle, then sintheta equal (a) (sqrt(5)-1)/4 (b) -((sqrt(5)-1)/4) (c) (sqrt(5)+1)/4 (d) (-sqrt(5)-1)/4

If sin2 theta=cos3 theta and theta is an acute angle,then sin theta equal (a) (sqrt(5)-1)/(4) (b) -((sqrt(5)-1)/(4))( c) (sqrt(5)+1)/(4) (d) (-sqrt(5)-1)/(4)

If sin5theta=cos4theta, whre 5thetaa n d4theta are acute angles, find the value of theta .

The value of cos48cos12 (A) (sqrt(5)+3)/(8) (B) (3-sqrt(5))/(2) (C) (sqrt(5)+1)/(4) (D) (sqrt(5)-1)/(4)

If tan\ theta/2=(cosec theta-sin theta), then tan^2\ theta/2 may be equal to (A) 2-sqrt(5) (B) (9-4sqrt(5))(2+sqrt(5)) (C) -2+sqrt(5) (D) (9-4sqrt(5))(2-sqrt(5))

If tan\ theta/2=(cosec theta-sin theta), then tan^2\ theta/2 may be equal to (A) 2-sqrt(5) (B) (9-4sqrt(5))(2+sqrt(5)) (C) -2+sqrt(5) (D) (9-4sqrt(5))(2-sqrt(5))

If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the same as the normal drawn at point (sqrt(5)costheta,2sintheta) on the ellipse 4x^2+5y^2=20, then theta=cos^(-1)(-1/(sqrt(5))) (b) theta=cos^(-1)(1/(sqrt(5))) t=-2/(sqrt(5)) (d) t=-1/(sqrt(5))

If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the same as the normal drawn at point (sqrt(5)costheta,2sintheta) on the ellipse 4x^2+5y^2=20, then theta=cos^(-1)(-1/(sqrt(5))) (b) theta=cos^(-1)(1/(sqrt(5))) t=-2/(sqrt(5)) (d) t=-1/(sqrt(5))

If the tangent drawn at point (t^2,2t) on the parabola y^2=4x is the same as the normal drawn at point (sqrt(5)costheta,2sintheta) on the ellipse 4x^2+5y^2=20, then (a) theta=cos^(-1)(-1/(sqrt(5))) (b) theta=cos^(-1)(1/(sqrt(5))) (c) t=-2/(sqrt(5)) (d) t=-1/(sqrt(5))