Home
Class 12
MATHS
Consider two function f(x)=lim(n->oo)(c...

Consider two function `f(x)=lim_(n->oo)(cosx/(sqrt(n)))^n` and `g(x) =-x^(4b)` where `b=lim_(x->oo)(sqrt(x^2+x+1)-sqrt(x^2+1))`. then `f(x)` is and number of solutions of `f(x) +g(x) =0` is

Promotional Banner

Similar Questions

Explore conceptually related problems

consider two functions f(x)=lim_(x rarr oo)(cos((x)/(sqrt(n))))^(n) and g(x)=-x^(4b), where b=lim_(x rarr oo)(sqrt(x^(2)+x+1)-sqrt(x^(2)-1))

If f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1) then range of f(x) is

Let f(x)=(lim)_(n->oo)(2x^(2n)sin1/x+x)/(1+x^(2n))\ then find :\ (lim)_(x->-oo)f(x)

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

If f(x)=lim_(n rarr oo)(x^(n)-x^(-n))/(x^(n)+x^(-n)),x>1 then int(xf(x)log(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx is

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals