Home
Class 12
MATHS
Let matrix A=[(x,3,2),(1,y,4),(2, 2,z)]...

Let matrix `A=[(x,3,2),(1,y,4),(2, 2,z)], " if " xyz=2lambda and 8x+4y+3x=lambda+28`, then (adj A) A equals :

Promotional Banner

Similar Questions

Explore conceptually related problems

[" 2.Let matrix "A=[[1,y,4],[2,2,z]]" ; if "xyz=2 lambda" and "8x+4y+3z=lambda+28," then "(adj A)" A equals: "],[[" (A) "[[lambda+1,0,0],[0,lambda+1,0],[0,0,lambda+1]]," (B) "[[lambda,0,0],[0,lambda,0],[0,0,lambda]]],[" (C) "[[lambda^(2),0,0],[0,lambda^(2),0],[0,0,lambda^(2)]]," (D) "[[lambda+2,0,0],[0,lambda+2,0],[0,0,lambda+2]]]]

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given that matrix A[(x,3,2),(1,y,4),(2,2,z)] . If xyz=60 and 8x+4y+3z=20 , then A(adj A) is equal to

Given the matrix A = [[x,3,2],[1,y,4],[2,2,z]]cdot If xyz = 60 and 8x + 4y + 3z = 20, then A(adjA) is equal to

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

Given the matrix A=[[x,3,2],[1,y,4],[2,2,z]] . If xyz=60 and 8x+4y+3z=20, then A(adjA) is equal to

[" Let "A" be a square matrix "],[" where "],[A=[[x,3,2],[1,y,4],[2,2,z]]" ,"xyz=60,8x+4y+3z=:],[" ,then "^(A)(adjA)" is equal to "]