Home
Class 12
MATHS
If a=min (x^2 +4x+5, x in R) and b= lim(...

If `a=min (x^2 +4x+5, x in R)` and `b= lim_(theta->0)(1-cos2theta)/theta^2` then the value of `sum_(r=0)^n a^rb^(n-r)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a=min {x^2+2x+3, x in R} and b=lim_(theta->0)(1-costheta)/(theta^2) then the value of sum_(r=0)^n a^r*b^(n-r) is :

Let a=min {x^2+2x+3, x in R} and b=lim_(theta->0)(1-costheta)/(theta^2) then the value of sum_(r=0)^n a^r*b^(n-r) is :

If a=min(x^(2)+4x+5,x in R) and b=lim_(theta rarr0)(1-cos2 theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is

Let a=min{ x^2+2x+3, x in R } and b=lim_(thetararr0)(1-costheta)/(theta^2) . Then the value of sum_(r=0)^na^rb^(n-r)

If a=min {x^2+4x+5:x in R} and b=lim_(thetato 0) (1-cos 2theta)/(theta^2) , then the value of sum_(r=0)^(n) .^nC_ra^rb^(n-r) , is

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

Let a=min{x^(2)+2x+3,x in R} and b=lim_(theta rarr0)(1-cos theta)/(theta^(2)) then the value of sum_(r=0)^(n)a^(r)*b^(n-r) is :

Let a=min(x^2+2x+3:x inR) and b=lim_(thetato0)(1-cos theta)/(theta^2) . Then sum_(r=0)^(n)a^rb^(n-r) is

let a=min[x^(2)+2x+3,x in R] and b=lim_(x rarr0)(sin x cos x)/(e^(x)-e^(-x)) then the value of sum_(r=0)^(n)a^(r)b^(n-r) is