Home
Class 12
MATHS
If y=(t a n^(-1)\ x^2) , show that (x^2+...

If `y=(t a n^(-1)\ x^2)` , show that `(x^2+1)^2(d^2\ y)/(dx^2)+2x(x^2+1)(dy)/(dx)=2.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=(tan^(-1)x^(2)), show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2

If y=(tan^(-1)x)^2 then show that (x^2+1)^2 (d^2y)/(dx^2)+2x(x^2+1)((dy)/(dx))=2 .

If y= (tan^(-1)x)^2, then show that (1+x^2)^2(d^2y)/(dx^2)+2x(1+x^2)(dy)/(dx) =2 .

If y = (tan^(-1)x)^(2) then show that (x^(2) + 1)^(2) (d^2 y)/(dx^2) + 2x(x^2 + 1)(dy)/(dx) = 2

If y= ( sin^(-1) x)^(2) , show that (1-x^(2) ) (d^2 y)/( dx^2) - x (dy)/(dx) =2

If y=(cot^(-1)x)^(2) , then show that (x^(2)+1)^(2)(d^(2)y)/(dx^(2))+2x(x^(2)+1)(dy)/(dx)=2.

IF [y= (tan^-1 x)^2 , show that [(x^2 +1)^2 d^2y/dx^2+2x (x^2 + 1)dy/dx=2]

If y=(tan^-1x)^2 , show that, (1+x^2)^2(d^2y)/(dx^2)+2x(1+x^2)dy/dx-2=0 .

If y=(cot^(-1)x)^(2) , show that (1+x^(2))^(2).(d^(2)y)/(dx^(2))+2x(1+x^(2)).(dy)/(dx)=2