Similar Questions
Explore conceptually related problems
Recommended Questions
- (x(dy)/(dx) -y ) sin (y /x) =x^(2)e^(x) , y = vx
Text Solution
|
- If (x-y)e^((x)/(x-y))=a; then y(dy)/(dx)+x is
Text Solution
|
- If y=e^(sin^(2)x) then (dy)/(dx)=
Text Solution
|
- If y=sin(log(e)x), then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to
Text Solution
|
- (x(dy)/(dx) -y ) sin (y /x) =x^(2)e^(x) , y = vx
Text Solution
|
- using the subsitiution y = vx : (1) (x(dy)/(dx) -y)^(e^(y/x) =x^(2) ...
Text Solution
|
- If y=log (e) x+sin x+e^(x) then (dy)/(dx) is:
Text Solution
|
- x(dy)/(dx)=y(logy-logx), where y=vx
Text Solution
|
- The transformation y=vx reduces (dy)/(dx)=(x+y)/(3x) to
Text Solution
|