Home
Class 12
MATHS
Let alpha in (0, pi//2) be fixed. If the...

Let `alpha in (0, pi//2)` be fixed. If the integral `int("tan x" + "tan" alpha)/("tan x" - "tan" alpha)dx = A(x)"cos 2 alpha+B(x)`
`"sin" 2 alpha +C`,where C is a constant of integration, then the functions A(x) and B(x) are respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

int(tan x-tan alpha)/(tan x+tan alpha)dx

int (tan x - tan alpha)/(tan x+tan alpha)dx

int{1+tan x*tan(x+alpha)}dx=

Prove : int ( cos 2x - cos 2 alpha )/(cos x - cos alpha ) dx = 2(x cos alpha + sin x) +c

If alpha = (2pi )/(7) , then tan alpha tan 2 alpha + tan 2 alpha tan 4 alpha + tan 4 alpha tan alpha =

If int (dx)/(cos^(3) x sqrt(2 sin 2x)) = (tan x)^(A) + C(tan x)^(B) + k , where K is a costant of integration , then A+B + C equls :

(x tan alpha+y cot alpha)(x cot alpha+y tan alpha)-4xy cos^(2)2 alpha=

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to

int tan(x-alpha).tan(x+alpha).tan 2x dx is equal to