Home
Class 12
MATHS
int0^pi||sinx|-|cosx||dx is equal to (...

`int_0^pi||sinx|-|cosx||dx` is equal to (a)`tan((3pi)/8)` (b) `tan(pi/8)` (c)`4tan(pi/8)` (d) `2tan((3pi)/8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi||sinx|-|cosx||dx is equal to (a) tan((3pi)/8) (b) tan(pi/8) (c) 4 tan(pi/8) (d) 2 tan((3pi)/8)

int_(0)^( pi)|sin x|-|cos x||dx is equal to (a) tan((3 pi)/(8))( b) tan((pi)/(8))(c)4tan((pi)/(8))(d)2tan((3 pi)/(8))

cot((pi)/(8))-tan((pi)/(8))=2

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

Find the value of (a) sin(pi)/(8) (b) cos(pi)/(8) (c) tan (pi)/(8)

int_(0)^(pi//8) tan^(2) 2x dx is equal to

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

(sec2x-tan2x) equals a) tan(x-pi/4) b) tan(pi/4-x) c) cot(x-pi/4) d) tan^2(x+pi/4)

The values of the definite integral int_0^((3pi)/4)((1+x)sinx+(1-x)cosx)dx , is (A) 2tan((3pi)/8) (B) 2tan(pi/4) (C) 2tan (pi/8) (D) 0