Home
Class 12
MATHS
int(x^x)^x(2xlogex+x)dx is equal to...

`int(x^x)^x(2xlog_ex+x)dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

int(xlog_ex)dx

intx^(x)ln(ex)dx is equal to

int(1)/(x)(log_(ex)e)dx is equal to

int 1/x(log_(ex)e)dx is equal to

I=int(log_e( log_ex))/(x(log_ex))dx is equal to

int ((x+2)/(x+4))^2 e^x dx is equal to

inte^(x)((x-1)(x-logx))/(x^(2))dx is equal to

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

The integral inte^x(f(x)+f\'(x))dx can be solved by using integration by parts such that: I=inte^xf(x)dx+inte^xf\'(x)dx=e^xf(x)-inte^xf\'(x)dx+inte^xf\'(x)dx=e^xf(x)+C , and inte^(ax)(f(x)+(f\'(x))/a)dx=e^(ax)f(x)/a+C ,Now answer the question: int{log_e(log_ex)+1/(log_ex)^2}dx is equal to (A) log_e(log_ex)+C (B) xlog_e(log_ex)-x/log_ex+C (C) x/log_ex-log_ex+C (D) log_e(log_ex)-x/log_ex+C

int (7x^6+7^xlog_e7)/(x^7+7^x) dx is equal to :