Home
Class 11
MATHS
If c^2 = a^2 + b^2, 2s = a + b + c, then...

If `c^2 = a^2 + b^2, 2s = a + b + c`, then `4s(s-a) (s - b)(s-c)`

A

`s^(4)`

B

`b^(2)c^(2)`

C

`c^(2)a^(2)`

D

`a^(2)b^(2)`

Text Solution

Verified by Experts

If `c^(2)=a^(2)+b^(2)` ……….
`c^(2)=a^(2)+b^(2) implies lt C = (pi)/(2)`
`:. Delta = (1)/(2)ab sin C = (1)/(2)ab`
`implies sqrt(s(s-a)(s-b)(s-c)) = (1)/(2)ab`
`implies 4s (s-a) (s-b) (s-c) = a^(2)b^(2)` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2)=a^(2)+b^(2) , then 4s(s-a)(s-b)(s-c) equals