Home
Class 11
MATHS
If c^2 = a^2 + b^2, 2s = a + b + c, then...

If `c^2 = a^2 + b^2, 2s = a + b + c`, then `4s(s-a) (s - b)(s-c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2) = a^(2) + b^(2) , then prove that 4s (s - a) (s - b) (s - c) = a^(2) b^(2)

If c^(2)=a^(2)+b^(2) , then 4s(s-a)(s-b)(s-c) equals