Home
Class 12
MATHS
यदि y = Ae^(mx) + Be^(-mx), तो y(2) = - ...

यदि `y = Ae^(mx) + Be^(-mx)`, तो `y_(2) = - m^(2) y` है ।

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=ae^(mx)+be^(-mx) , then y_(2) is :

If y=ae^(mx)+be^(-mx)," then "y_(2)=

If y = ae^(mx) + be^-(mx) , then (d^2y)/(dx^2) =

Find the second order derivative of the following functions If y = ae^(mx) + be^(-mx) , prove that (d^2y)/(dx^2) - m^2y = 0

If y= Ae^(mx) + Be^(-mx) , show that (d^2y)/dx^2-m^2y=0 .

If y = ae^(mx) + be^(-mx),"then"(d^(2)y)/(dx^(2))-m^(2)y = .........................

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If u=A e ^(mx) +Be^(nx ) ,then y_2-( m+n) y_1+ mn y=