Home
Class 12
MATHS
If f:R-{5//2}rarr R-{-1} defined by f(x)...

If `f:R-{5//2}rarr R-{-1}` defined by `f(x)=(2x+3)/(5-2x)` then `f^(-1)(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R-{-(15)/(2)}rarr R-{(1)/(2)} be defined by f(x)=(x+10)/(2x+15) then f(x) is

f:R rarr R defined by f(x)=x^(2)+5

If f:R rarr R defined by f(x)=x^(2)-6x-14 then f^(-1)(2)=

Let f:R-{(3)/(5)}rarr R be defined by f(x)=(3x+2)/(5x-3). Then

If f:R-{3/5} rarr R be defined by f(x) = (3x+2)/(5x-3) , then .........

If f : R rarr R is defined by f(x) = 2x + 3, then f^-1 (x)

f:R rarr R defined by f(x)=(x^(2)+x-2)/(x^(2)+x+1) is

f:R rarr R defined by f(x)=(x^(2)+x-2)/(x^(2)+x+1) is:

If f:R rarr R defined by f(x)=(x-1)/(2) , find (f o f)(x)

If f:R rarr R defined by f(x)=2x+5, if x>0=3x-2, if x<=0: then f is