Home
Class 12
MATHS
lim(x->e)(lnx)^(1 /(ln(e/x))...

`lim_(x->e)(lnx)^(1 /(ln(e/x))`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->e) (lnx-1)/(x-e)

lim_(x rarr e^+)(lnx)^(1/(x-e)) is

The value of Lim_(x->oo)(xln(1+lnx/x))/lnx

Using the L .Hospital rule find limits of the following functions : lim_(x to 1)(1/(ln x)-x/(lnx))

Evaluate: lim_(x->a)("log"(x-a))/(log(e^x-e^a))

Let a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx

lim_(x->0^+)((sinx)/(x-sinx))^(sinx) is (a)0 (b) 1 (c) ln e (d) e^1

(7) Find the value of lim_(x->0) ((e^(x)-1) log(1+x))/(x^(2))

lim_ (x rarr e) (ln x) ^ ((1) / (ln ((e) / (x))))

The value of lim_(x->oo)((log)_e((log)_e x)/(e^(sqrt(x)))i s___________